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A THEORY OF VISCOPLASTICITY BASED ON INFINITESIMAL TOTAL STRAIN 

E.P. Cernocky and E. Krempl 
Department of Mechanical Engineering, 
Aeronautical Engineering & Mechanics 

Rensselaer Polytechnic Institute 
Troy, New York 12181 

ABSTRACT 

A viscoplasticity theory based upon a nonlinear viscoelastic solid, linear 
in the rates of the strain and stress tensors but nonlinear in the stress tensor 
and the infinitesimal strain tensor, is being investigated for isothermal, 
homogeneous motions.  A general anisotropic form and a specific isotropic form- 
ulation are proposed.  A yield condition is not part of the theory and the 
transition from linear (elastic) to nonlinear (inelastic) behavior is continu- 
ous.  Only total strains are used and the constant volume hypothesis is not 
employed.  In this paper Poisson's ratio is assumed to be constant.  The pro- 
posed equation can represent:  initial linear elastic behavior; initial elastic 
response in torsion (tension) after arbitrary prestrain (prestress) in tension 
(torsion); linear elastic behavior for pure hydrostatic loading; initial elastic 
slope upon large instantaneous changes in strain rate; stress (strain)-rate 
sensitivity; creep and relaxation; defined behavior in the limit of very slow 
and very fast loading.  Stress-strain curves obtained at different loading rates 
will ultimately have the same "slope" and their spacing is nonlinearly related 
to the loading rate. 

The above properties of the equation are obtained by qualitative arguments 
based on the characteristics of the solutions of the resulting nonlinear first- 
order differential equations.  In some instances numerical examples are given. 

For metals and isotropy we propose a simple equation whose coefficient 
functions can be determined from a tensile test [Eqs.(31), (35), (37), (38)]. 
Specializations suitable for materials other than metals are possible. 

The paper shows that this nonlinear viscoelastic model can represent 
essential features of metal deformation behavior and reaffirms our previous 
assertion that metal deformation is basically rate-dependent and can be repre- 
sented by piecewise nonlinear viscoelasticity.  For cyclic loading the proposed 
model must be modified to account for history dependence in the sense of 
plasticity. 
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1. Introduc tion 

I The description of inelastic behavior, specifically of metals, has in recent 

years attracted considerable attention.  This interest is caused by demands of 

I ■       technology and by the availability of powerful computation methods in the design 
A       office.  In addition recent developments in material test techniques show that 

the classical idealizations of real material behavior are not adequate. 

There were for a long time three almost separate disciplines of metal 

"plasticity".  At low homologous temperature rate (time)-dependence was con- 

sidered in dynamic plasticity, see for example Cristescu [1], whereas rate 

(time)-independence was assumed in static plasticity, Hill [2], Prager [3] and 

others.  At high homologous temperature creep is important and separate creep 

theories were developed, Odquvist [4], Rabotnov [5], Hoff [6],  These theories 

were then combined with rate (time)-independent plasticity for the representa- 

I      tion of metallic material deformation behavior, Leckie [7], Corum et al. [8], 

under quasi-static conditions. 

A growing body of evidence suggests that inelastic deformation of metals 

is basically rate-dependent, Rice [9],  Perzyna [10], Kratochvil [11], Miller [12], 

Hart [13], Eisenberg, Lee and Phillips [14], Phillips and Ricciuti [15],  Recent 

investigations also aim to give a general representation of plasticity which 

combines the above approaches and at the same time improves upon the capability 

of reproducing real metal deformation behavior, since the capabilities of the 

classical theories were shown to be in need of improvement, Krempl [16]. 

A review was made of the experimental foundations of static plasticity 

theory emphasizing the experiments designed to differentiate between incremental, 

physical,and deformation theories of static plasticity, Edelman [17],  In almost 

all instances creep at room temperature was mentioned as a problem which had to 

be avoided.  "Creep causes great difficulty in full interpretation at high values 
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of strain.  It is still a confusing factor in the range of small strains investi- 

I        gated.  However, no correction was made for time effects", Drucker and Stockton [18] 

Recent experiments on Type 304 stainless steel, copper, brass, and an aluminum 

alloy Moon and Krempl [19], Hart et al. [20], showed that rate sensitivity, creep, 

and relaxation were present at room temperature.  These facts attest further to 

the rate-dependent deformation of structural metals at room temperature. 

I In previous papers, Krempl [21,22], an operational definition of history 

dependence in the sense of plasticity, of aging, and of rate-dependence was given. 

■ As a consequence of these definitions we asserted that viscoplasticity cannot 

■ be distinguished from nonlinear viscoelasticity while a material is loaded,and 

we postulated that viscoplasticity is piecewise, nonlinear viscoelasticity. 

■ Rather than postulating state variables and their growth laws, the introduction 

of new origins and the possible updating of the material parameters provides for 

the necessary representation in constitutive equations of the internal micro- 

structural changes, Krempl [21] . 

Here we propose a relatively simple nonlinear viscoelasticity law based 

upon small total strain; it is linear in the stress rate and strain rate tensors 

but nonlinear in the stress and strain tensors.  The anisotropic form exhibits 

key characteristics of metal deformation behavior.  Subsequently an isotropic 

formulation is given which exhibits creep, relaxation, and rate-sensitivity in a 

unified way.  Only total strains are employed, the constant volume assumption is 

not used, and the model can predict linear elastic response under hydrostatic 

loading.  The axial and torsional equations exhibit similar solution character- 

istics.  In uniaxial deformation the specific isotropic equations proposed herein 

reduce to the previously proposed uniaxial equations, Cernocky and Krempl [23], 

Liu and Krempl [24], which were shown to represent many features of rate- 

dependent metal deformation behavior.  The attempt here is not to present 
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I 
general theories but rather a relatively simple model complex enough 

I       to reproduce qualitatively key features of metal deformation as long as there is 

no cyclic loading involved.  The modifications of this nonlinear viscoelastic 

I        model to fully represent metallic behavior for cyclic loading are not a subject 

■ of this paper.  They were in principle given previously, Krempl [21], and will 

be developed for the constitutive equation of this paper in a future publication. 

I 
2. General Properties of the Anisotropie Model 

I We consider only homogeneous motions and propose for small strain e  and strain 

rate a and associated stress cr and stress rate cr the constitutive equation 

M,[a,e]e + G[e] = a + K[a,e]a . (1) 

■ In the above square brackets denote function of the quantities inside the 

brackets and a dot designates differentiation with respect to time. 

The fourth order tensors M^ and K, linearly transform e and b,   respectively. 

■ They are required to be symmetric, positive definite linear transformations for 

all values of their arguments such that 

I 
I 
I 
I 
■Further, we usually require that G be a bijective function over all real tensor 

values. In this case we ensure that (1) is an equation of state, i.e., given 

I       any three tensor variables in (1) the fourth tensor variable is uniquely 

determined. 

I 

I 
I 

M. ., „B. .B, „ >  0  and  K. .. ,B. .B, , > 0 (2) 
ijkX, l] \& i3kx i] k£ 

for all nonzero tensors B.  Because of this requirement the inverses of ^ and g 

exist. 

The function G[e] is constructed so that G[0] =0  and we usually require 

it to be odd so that 

G[-e] =- G[e] . (3) 
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For zero e and zero cr, a = 0 and 6 = 0 as well as cr = G[e] are solutions to (1), 

The function G[e] represents for given strain e the locus of a for which both 

the stress rate and strain rate are zero; the origin is one of these points. 

V . o      ^ 
A generalized creep test is performed by setting a= 0 and a = a    for t s tQ 

where a is a constant tensor.  Equation (1) reduces to 

MS = cr° - G[e] (4) 

which must be solved subject to the initial condition e(t ) # 0 to obtain 

e = e[t] -e[t ], the strain accumulated in the creep test. 

Similarly, for a generalized relaxation test e = 0 and e = e  for t^t such 

that 0 

Kä = G[e ] - a   . (5) 

Aqain (5) has to be solved for a suitable initial condition <r(t ) # 0. 

Although both tests follow different paths the stress rate will be zero 

at the stress cr =G[e°] and the creep rate may become zero at a strain which 

satisfies cr0 = G[e]**.  We conclude that the relaxation test (5) will always 

reach equilibrium whereas the creep test may not.  However, if G is bijective 

for all real e then both tests terminate on the G[e] curve. 

If we multiply (4) by e and contract we obtain 

and similarly from (5) 

(Cf°. - G. . [e. A)k. .   ^ 0 (6) 

(G. . [e° ] - CT. .)CT. . £ 0 (7) 

because of the positive definiteness of M and K. 

-3f 

By generalized creep test we mean a test condition where all the components 
of a are constant; some may be zero. 

For a given G such an e may not be found. 
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5. 

In the case where G is bijective so that the inverse of G exists, for every 

tensor "e = constant the function G may be utilized to construct a surface. 

Then in the case of a = G[e], we obtain 

Vij"^1^!16«^!1- (8) 

For each constant value of e", (8) represents a surface in stress space which may 

be isotropic or anisotropic.  For zero strain (8) degenerates into the origin. 

With increasing strain the surface defined in (8) "increases in size", since the 

left-hand side represents the square of the magnitude of the strain tensor. 

Equation (8) represents for each constant e" the surface for which there are 

zero rates of stress and strain. 

Relation Between M and K 

Using the chain rule we may rewrite Eq.(1) as 

(9) I(M[a,e] - K[CT,e] -£)  e=a-G[e] 
"■V 

I      or as -, 

(M[cr,e] ^ - K[a,e] ) a=cr-G[e] 
\Ä5 t\s7  ^    OCT      ^^ '"v"'  '"*"'  /  '"*"'    *"*"'    *V»  «X» 
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or as 
/      oe        \ 

(10) 

We are interested in the response of (1) with initial conditions such that 

a-G[e] =0, i.e., we want to compute the response of (1) upon leaving the 

"equilibrium stress-strain curve" [15] at any point e. 

For this case (9) and (10) represent linear, homogeneous equations in the 

strain and stress rates, respectively.  The rates can be arbitrarily imposed 

and a and e are also arbitrary.  Consequently, the expressions in the paren- 

theses must vanish when cr = G[e] and we obtain 

-1 3CT 

S Bla=G[e] = ö7 (11) 
r\j    i"\*    «"V* 'V» 

and 
1 -1 3~ 

(X M)  I _^r   .   = rr-  . (12) X
P9 »'  i(j=G[e]  da 
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If we select K 1
M| , =c where c represents  the fourth-order tensor of the 

pa   «j|o"=G[e]     i=ö P=: 

| elastic constants,     then  (11)   and   (12)   show that all curves depart from the 

equilibrium stress-strain curve £-G[e] =0 with elastic "slope".      (Note,   this 

includes the origin.     Also  it is impossible to depart from a-G[6]=0by a creep 

or relaxation test.) 

Following Cernocky and Krempl   [23]   we now impose 

IK_1M = c dla) 
pa    pa       pa 

for all values of a  and e, since this relation leads to several useful proper- 

ties in the model.  Note, however, that K and M remain nonlinear functions; only 

■     their combination according to (11a) is constant. 

A consequence of condition (11a) is the ability to model realistically the 

subsequent response of a metal in torsion after a preload in tension.  Such 

experiments are reported in the plasticity literature.  Most of the experiments 

show, Edelman [17], that in the presence of arbitrary axial preloading the 

I      initial response in torsion is purely elastic. 

Appendix I demonstrates that (1) subject to (11a) and additional specified 

restrictions on M, K, and ^ can reproduce the initial elastic response for 

various material symmetries including isotropy, transverse isotropy, and ortho- 

tropy.  We therefore have demonstrated that the rate-dependent Eq.(1) can 

I      reproduce a key result which is normally considered to be in the domain of rate 

(time)-independent incremental plasticity theory.  Note that we have 

used total strains only. 

Formally, we can at any time split the strains into elastic and inelastic 

strains which are, however, rate-dependent.  To demonstrate this we rewrite (1) 

using (11a) and obtain 
t 

e[t]   =   |  M-1(a[T] -G[e[T]] ) dT + c~ a (13) 

I 
I 

I 

I 
I 
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or 

e[t]   = ein[t]   + eel[t] I 

■      and where we have assumed that for t ^0 a = 0 and e = 0 

where r (14) 
t ■> 

_1 '(a[T] -G[e[T]]) dT 

r\j *-^, rv/ f\j 

Behavior at and near a= 0 and e = 0 
'V/   />_» 

We assume that G[e] is linear in e in the neighborhood of the origin 

e..e.. S § « 1 where 5 is a suitable constant, and we investigate the two 
ID ID 

possibilities 

= c (15a) 
«s 

(15b) 

dG 

de      _ 
e. .e. .£§ 
ID ID 

and 

dG 

e..e..^F 
ID ID 

where c and c are both constant tensors. 

Using (11a) and (15a), Eq.(9) can be rewritten as 

/ ^Z\ 
Klc - 7^-)  e=a-ce . (15c) 
<==^  de/ ~ ~ «~ 

The initial material response predicted by (15c) is independent of the strain 

rate and is that of a linear elastic material.  Alternatively when (15b) is 

used instead and when K is assumed to be constant in the neighborhood of the 

origin, then the initial response predicted by (1) is that of a linear aniso- 

tropic viscoelastic solid. 

The model proposed in (1) subject to (11a) reproduces initial linear elastic 

response, and initial linear shear response after an arbitrary prestress in 

tension for special material symmetries.  Also in the neighborhood of a=0 

and e = 0 linear elastic or linear viscoelastic behavior can be modeled. 

r\j n^ 

i-K/ f\j 
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A Particular Dependence of ^ and g Upon a  and £ 

Thus far the dependence of K and M upon CT and e has not been stipulated and 

the previous results are valid for all K and ^.  If we make these functions 

depend upon the difference {cx-Gfe]} then additional desirable properties can 

be modeled.  Specifically, Eq.(9) can be rewritten as 

K[a-G[e]]{c - 3- e = a-G[e] (16) 

and from (4) and (5) we obtain, for the generalized creep and relaxation test, 

respectively 

e = c"1K"1[a0-G[e]]Ca°-G[e]} (17) 

and 

CT = K_1[a - G[e°]]{a -  G[e°]} . (18) 

Suppose that a generalized constant strain rate test with e = n  is conducted 

do- 

with the hypothetical material represented by (16) and that we observe — 

to be constant; then we must conclude that CT - G[e] = A where A is a constant 

tensor and we can construct surfaces 

e. .e . . = ff.^tG[e] + A]ff-.^[G[e] + A] (19) 
in in   'vij ~ ~   ^ ~i-D ~ ~   ~ 

•%■ 

where e is some constant strain field.  For A=0 we obtain the surface of 

Eq. (8). 

Therefore in a creep or relaxation test started from any point on a curve 
d<r 

for e = Hon which —  is observed to be constant, the initial creep rate or the 

initial relaxation rate is independent of the actual value of a  and e, depending 

only upon {a-G[e]}. 

We now derive a specific and simple isotropic version of (1).  This version 

permits the identification of the coefficient functions from experimental 
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results and the simulation of real experiments by numerical integration of the 

resulting first-order nonlinear differential equations. 

3. An Isotropie Formulation 

A specific isotropic formulation can be obtained by using the following 

requirements which are deemed suitable for metals: 

• The isotropic equation is to be derived from (1). 

• The tensors M and K must be tensors of constants times a 

respective scalar-valued function of the invariants of the 

stress and strain tensors. 

• For hydrostatic stress (strain) states the classical linear 

elastic relation must be obtained. 

• The constant volume assumption is not imposed upon this theory, 

because a recent literature survey has not produced experimental 

evidence to support this assumption in the small strain range, 

Hewelt and Krempl [25] . 

• The isotropic equation must reduce to the uniaxial formulation [23] 

when the uniaxial deformation field is imposed. 

With these stipulations and the symmetry of a  and e in mind we set 

M. . ,= 6. 6.JVL +M06. .6 . (20) 
ijäb        xa jb 1  2 lj ab 

K. .  = 6. 6..K. +K„6. .5 . (21) 
ljab   la ]b 1  2 i] ab 

where M. and K. (i=l, 2) are isotropic scalar-valued functions of invariants 

of the stress and strain tensors.  When s represents the deviatoric stress, 

d d 
e the deviatoric strain and G the deviatoric component of G, G.. =G.. - 

— G  5.., we may rewrite (1) using (20), (21) as 

Mne.. - Kns.. = s.. - G..[e] (22) 
1 lj    1 1]    13    ij   ~ 

(M. +3M_)e  -(K.+3K_)a  =a  -G  [e] . (23) 
1   2  aa   1   2  aa  aa  aa ~ 
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10. 

The previously proposed uniaxial constitutive equation is [23,24] 

m[a,e]e - k[a,e]a = a- g[e] (24) 

where a is the axial stress and e is the axial strain in the uniaxial deforma- 

tion field.  We stipulate that in this deformation field Eqs.(22) and (23) must 

reduce to (24).  This requires that when the strain tensor is 

[e]  = e 

10 0 

0 -V 0 

0   0  -v 

(25) 

then the tensor G must assume the specific form 

1  0 

j G[e31  = gte] 
ID 

0   0 

0   0 

0 

0 

0 

(26) 

where v is Poisson's ratio which for this paper is considered to be a positive 

constant less than 1/2. In addition, the coefficient functions Mi and IC must 

assume the specific forms: 

(27) = mro-,6] 
1    1 + V 

vm[a, e] 
M  =  <  
2   (l + V)(l-2v) 

K = k[a, s] 

K2 = 0 

(28) 

(29) 

(30) 

To generalize our construction of M. and K. and meet the requirements of 

isotropy and those embodied in (27) - (30) we assume for all deformation fields 

the forms presented in (27) - (30) except that we replace the stress therein 

by a suitable invariant cp of the stress tensor, and we replace the strain therein 

by a suitable invariant cp of the strain tensor.  These invariants are restricted 

by the requirements that in a uniaxial deformation field, cp must reduce to the 

From [23] m[ ] and k[ ] are restricted to be positive and bounded. 
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11. 

axial stress cr and cp must reduce to the axial strain e.  An example of a choice 

suitable for metals is 

LD   ID 

and 

«P-^-d eijsj/d+v) (3D 

* = h = (f sijsij) • (32) 

Additional pairs of cp,cp appear in Table I.  We remark that the cp, cp pairs are 

|      related by the restriction that when on the surface defined by (8), i.e., when 

a     = G .[el. then cp = g[cp]; this constrains cp for a given choice of cp. 
ij  l] ~ '     T 

From (27) - (32) we obtain the constitutive representation 

I ELl§ii£le..-k[cp,cP]s.. = s..-G
d.[e] (33) 

™ 1+V   ID     '   ID   ID   ID ~ 

|m[cp,cp] 
,-, n  x e  -k[cp,cp]a =CT -G [e] . (34) (l-2v)  aa   T,T aa  aa  aa ~ 

Equations (25), (26) severely restrict the representation of the functions 

G  [e] ; a specific construction of G appears in Appendix II.  We note that the 
lj ~ ~ 

argument of G and G  is the total strain tensor e, and not its respective 
~      aa ~ 

deviatoric and hydrostatic components.  Therefore, Eqs.(33) and (34) must be 

regarded as coupled equations. 

Alternatively (33) and (34) may be combined to obtain 

m[cp, cp] iJK . + G± . [e] = o\ . + k [cp,cp] b±^ (35) 

where if. .   is defined by 
ID 

e. .       ve AD  +    aa       _ (36} 
Tij  (1 + v)   (1 + v) (1- 2v) ij 

Also from (11a) we require that m[ ] and k[ ] always be related through the ratio 

HT-E »7» 
where E is the modulus of elasticity.  (Appendix III discusses the consequences 

of m/k # E. ) 
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12. 

In view of (11a) and the discussion associated with (16) we now define the 

invariant i 
r = {(CT. . -G. .[e]) (CT. . -G. . [e])} . (38) 

Individually we now select m[ ] and k[ ] to be functions of T  alone.  In the uni- 

axial deformation field, this corresponds to m = m[CT - g[e] ] and k = k[c-g[e]] in (24) . 

Using the chain rule (35) may be rewritten using (37) as 

/  of. .   OCT. .v      CT. . - G. . [s] 
(F   

1J  -       13Vr   - ^   13 ~ (39)** 
\E  oe,    oe^km ~   k[H    ' ( ' km    km 

It is easily seen that departure from the curves a. . =G. . [e] is linear 

elastic.  Furthermore (39) predicts initial elastic shear response in the 

presence of axial prestress (prestrain) and predicts initial elastic axial 

response in the presence of shear prestress (prestrain); (see Appendix I for 

details).  Figure 1 demonstrates the initial elastic shear response predicted 

by (39) at various axial prestrains; for ease in the numerical integration and 

since (A9) clearly shows that the initial elastic response is obtained for any 

k-function, k was chosen to be constant. 

Limiting Behavior at Large Times 

Following the methods developed for the uniaxial case, Cernocky and 

Krempl [23], we now transform (35) subject to (37) into an equivalent integral 

expression and obtain with cr(0) =0 and s(0) =0 

£ r       of...    OG t 
CT. . =G. . [e] +  iE 

I (E aiT1 " äir"}{exp " I kirfxir} ^kmdT • <40) 
ö "" ""km  ""km" "     T 

oG  [e[t]] 
Provided the limits of  ji_  }   'e       3^3 k[r[t]] are bounded and 

km 

finite as t -» «>,   Eq. (40) can be used to determine the response for large times 

* 
Further motivations for this modification appear in Part 4 and in [23] . 

*#- 
of. . lj ■<■   appears in (B5) of Appendix II. 
km 
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following the procedure of Cernocky and Krempl [23] .  We obtain 

I,,    9+..   OG.. 
lim f n    - a    rert-n 1 = -u E . 13 - ^—i 

13. 

lim {CT. .-G. .[e[t]]} = {(E ^-ii - ^-ii)e. k[n} (41) 
km    km 

and 
9CT . .  öG. . [ e [°°] ] 

lim ~1 =  ^ '  . (42) 
r     km      km 

Equation (41) says that ultimately the "slopes" of stress-strain curves are 

equal to the "slopes" of the G-curves. 

Performing the limits in (41) and (42) may appear unrealistic and in viola- 

tion of the small strain assumption.  In reality this is not so since the solu- 

tions of (40) are rapidly asymptotic to these limits.  This has been demonstrated 

in the uniaxial case, Liu and Krempl [24], Cernocky and Krempl [23], and will 

be reaffirmed by some of the examples to be given later, see specifically Fig.3. 

Therefore (41) and (42) may be used as approximate relations when time is finite. 

If we assume that G.. is approximated by (B8) and that 9 > X  then from 

(41) and (42) with (B9) we have for large times 

df. ■ 
(CT..-G..) ~ (E-V -^ ckmMk[r|t_J (43) 

km 

and -.        .., 
OCT. .       M. . 

oT7~EsäiT-    > (44) 
km km 

respectively.  In the above E denotes the constant slope of the uniaxial 

stress-strain curve in the plastic range.  Again (43) and (44) may be used as 

approximate expressions for finite time. 

Consider now a uniaxial tensile test with strain e and performed with 

constant strain rate a  and let CT  =CT, then from (40) using (Bl) 

t t 

CT-g(e)=aJ (E-g-[e[s]])(exp-Jk[CT[x]
d_Xg[e[x]n)ds (45) 

o s 

For cp > Xf,g(cp) in Appendix II is assumed to be approximately linear. 

I 
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Let X = lim (er-g[e [t] ] ) • then from (45) or (43) 
t-»oo 

X  = (E-E )a  . (46) 
k[X]   v   s' 

Similarly,   from   (40)   the response  in a shear test with constant shear-strain 

rate  e     =e     =y,   where a     = a is obtained to be 

* aG12[e12[s1t-e21[sI1       ^ [e^ [s] ,-e^Cs] ] 
(CT12"G12[e12;e21])~Y J   ITTS oe_[s] oe„,[s] J 

12" 21' 

t 

ds . (47) 

kfV^Y] 

E-E 

I 
Ijexp - J      - 1 

s    k[y2(ai2[x] -G12[e12[x];e21[x]])]J 

™ We  let  Y = lim (a     - G. 0)     and obtain,   using   (47)   or  (43) 

I 
I 
I 
I 
I 
. (°12-^[^])=ü^|Mir^^>]} 

(exp - J J ds . (47a) 

where X and Y denote the respective heights of the axial and shear responses 

above the axial and shear equilibrium curves.  If a = y  we see from (46) and (48) 

that Y and X are different.  If G does not permit the approximation (B8) then 

the right-hand sides of (46) and (48) also depend upon the choice of cp.  In this 

case Eq.(41) applies. 

For the invariant cp given in (31), (47) reduces to 

■e„j3 t 

The solutions of (45) and (47a) for various a=Y~values and a specific 

choice of g[ ] and k[ ] are given in Fig.3.  The results were obtained with a 

computer program developed by Liu and Krempl [24].  Note the nonlinear spacing 

of the curves at various constant strain rate values in the axial and shear 
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tests.  This is due to the dependence of the k-function upon {<T-G} through the 

invariant T; see the discussion in Cernocky and Krempl [23], 

Limiting Behavior for Very Large and Very Small Constant Strain Rates 

The case of uniaxial deformation under limiting magnitude of loading rates 

is considered in detail in Cernocky and Krempl [23].  We will consider here the 

limiting loading rate cases for shear.  We let e  =e = y  so that (47) applies, 

and we define the transformation 

(49) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
| *„ "^ + J {| B/a +„ - ^} e*p{- 1A I     j^} 
™ o -" x12      12 

| + J {i E/(1 + w) ._12.}exp{_ w   j" _i2i_} dX2i 

I 
I 
| ^12[ei2^e21;0] =G 

CT12tei2^21'^] =a(t)|ei2=e21-Yt 

all other e.. = 0 
ID 

where a  is the stress response as a function of strain and parametric depend- 

ence upon Y is indicated.  Proceeding we obtain 

3G,^    r «"    dz. 
e12 ^ e12 

(50) 

and where in this case 

r[z2i]=rrzi2] = & (&12 - G12 [z12, z21n. (5D 

We consider limiting slow loading rate and we let y  -» 0 in (50) to obtain 

(52) 
12 ' 

If (31) is used with (Bl) then G  in (52) is given by 

Appropriate representations for G  using the other 9 of Table I are easily 

obtained, see Fig.2. 
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Similarly for limiting fast loading rate we let y  - » and we obtain from (50) 

&i2[ei2>e2i;<X5] - irhfei2 (54) 

Equation (52) shows again that G represents the equilibrium stress-strain 

curves.  The linear elastic response at high strain rate is due to the assump- 

tion (37).  Analogous results apply when any component of the strain (or stress) 

tensor is applied at a limitingly fast or slow loading rate.  Therefore, (39) 

or (40) predicts linear elastic behavior in the limit of very fast loading. 

If instead of (37) Eq.(Cl) applies, then a nonlinear response in (54) is 

Instantaneous Change in Strain Rate 

Suppose the strain rate is changed instantaneously at some point CT # 0, 

e1 # 0 and corresponding time t .  Let e and e be the strain rates for t < t 

and t > t , respectively.  Then we derive from (39) 

OCT..  , 

de,   km 
km 

OCT M42 
de,   km 

t=t     km o o 

oi|f. . ,     , 

= E 5-Ü (e,  - k:  ) .          (56) 
+    de, km   km 

t=t       km 

1     1** The change in slope is therefore independent of CT and e     As a specific 

example we consider 
e = be (57) 

where b is some constant.  Then 

Note that this property is true even if the function k depends upon cp, cp. 
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da. 
Qi Ids, km (I 

3a. 
ID 

de 
t=t 

km 

at 

t=t 
km 

(58) 

Let us now consider the case where the change in strain rate takes place 

when (42) and the approximation (44) hold,  i.e., if the strain rate is changed 

in the "plastic region".  Under this condition (58) may be rewritten as 

rda. Oljl. . 

Sf    -(^4(-f)))R„=°- 
km . .+      km 

(59) 

t=t 

We assume that E /E « 1 as is true for most metals.  Then we see that for 
s 

|b| »-1, i.e.}  very large positive or negative changes in strain rate, the slope at t = t 

is approximately elastic.  On the other hand if we reverse the strain rate, 

b = - 1, then the "slope" at t= t is approximately twice the elastic "slope" . 

Creep and Relaxation 

Before a creep and relaxation test can be started from some value of the 

stress and strain tensor we must reach this stress and strain tensor by another 

test.  Let this other test be terminated at time t = t , and up to this time we o7 

impose an arbitrary constant strain rate H.., so that e.. 

that g' [cp] < E so that (B7) is positive.  Then from (40) 

{a. . - G. . [e]}H.. s 0 
13  13 ~  i] 

and with this result from (39) 

di|f. .  da 

t<t 
= H. ..  We assume 

(60) 

/   Olli . . UU . .v 

(E -il - —ilV. .*.  * 0 
\  de, de, / 13 km km km 

(61) 

for t^t. 

These properties are shared by the anisotropic model as well; compare (16) 
with (39).  However, in this case we have not shown that (42) holds true at 
large times. 
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da 
Because H can be arbitrary Eq. (61) asserts that the "slope" -^- obtained in a 

<-»_, CIS 

constant strain rate test cannot exceed the "elastic slope".  From (60) we 

deduce that in a tensile or shear test with positive (negative) constant strain 

rate the corresponding components of a - G are positive (negative).  Both state- 

ments require (B7) to be positive. 

At t = t the creep or relaxation test commences and from (35) using (37) 
o 

and (38) for t > t 
°      .    a°.-G..[e] 

*  = -12 ^ ~ (62) fij       Ekcn 

for the case of creep; for the case of relaxation 

G..[e°] - a. . 
'a_   =    13 ~ hi (63) 
lj    k[H 

I 
I 
I 
I 
I 
I 
I 
I 
I 

where the superscript ° denotes the quantity which is kept constant during a 

|       specific test. 

m Using the interpretation of (60) given earlier, we can now state that the 

™       axial and shear creep rates following the respective test with constant positive 

I        (negative) strain rate are positive (negative).  However, the relaxation rates 

have the opposite sign of the corresponding creep rates.  Since k is positive, 

I        see Cernocky and Krempl [23], the sign of a particular component of the creep 

(relaxation) rate is always determined by the sign of the appropriate component 

■        of [a - G].  The initial loading determines therefore the sign of a particular 

component of the creep and relaxation rates. Moreover, the creep (relaxation) 

rates are zero only if the corresponding components of {<T - GJ are zero. 

I If the invariant cp or any other deviatoric cp together with (Bl) is used 

then Ei|r-G = 0 for a hydrostatic state of strain and a = G from (40).  For this 

state of strain and for deviatoric cp there is no creep and no relaxation. 

However, if a nondeviatoric invariant cp was to be employed instead then creep 

and relaxation can occur for a hydrostatic state of strain. 

I 
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4. Discussion 

In the preceding the properties of a nonlinear anisotropic or isotropic 

constitutive equation based on total strain were investigated.  It has been 

shown that this model can represent many qualitative features of metal deforma- 

tion behavior in a unified way, including 

• Initial linear elastic behavior 

• Initial elastic response in torsion (tension) after arbitrary 

prestrain (prestress) in tension (torsion) 

• Linear elastic, rate-independent behavior for pure hydrostatic 

stress (strain) 

• Initial elastic "slope" upon large instantaneous changes in strain rate 

in the "plastic region" under any state of stress 

• Strain (stress)-rate sensitivity of the stress-strain curves 

• Defined behavior in the limit of very slow and very fast loading rates 

• Nearly rate-independent behavior for small strain rates and a 

proper choice of the material function k 

• Stress-strain curves obtained at different constant strain rates 

will ultimately have the same slope. 

• The spacing of the stress-strain diagrams can be highly nonlinear. 

The stresses at a given strain for stress-strain curves obtained 

with strain rates differing by several orders of magnitude can be 

much less than an order of magnitude different. 

• Creep and relaxation are included in a natural way 

• Relaxation will ultimately terminate, but both primary and secondary 

creep are possible. 

• The creep rates have the same sign as the strain rates used to arrive 

at the creep stress level.  The relaxation rates have the opposite 

sign. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

20. 

• Initial creep and relaxation rates in tests started from a point in 

the "plastic range" of a constant strain-rate tensile test depend 

only upon the strain rate, and not on the particular values of 

stress and strain. 

In the above we have used stress-strain  curves, strain rate, creep,and relaxa- 

tion rate in a scalar sense.  It is implied that the tensor equations of the 

paper are specialized to suitable homogeneous deformations such as the tensile 

or shear (torsion) test. 

We have kept the equations as simple as possible, and the two remaining 

coefficient functions in (35) subject to (37) and (38) can in principle be 

determined from uniaxial tensile tests alone.  Here we have assumed that Poisson1s 

ratio is constant.  A forthcoming paper will deal with variable Poisson's ratio 

to remove this restriction.  The proper choice of the invariant tp in G will 

determine the relation between the axial and shear responses as demonstrated 

in Fig. 2.  The isotropic formulation given in (35) is of course only one of many 

that can be derived from (1).  Equation (1) is itself a very specific choice. 

But even the specific choice of (35) offers many possibilities. We have 

emphasized the application to metals, i.e., conditions (37) and (38) together 

with a deviatoric cp in G.  However, if a nondeviatoric 9 is used in G while 

keeping (37) and (38) we can model creep and relaxation under pure hydrostatic 

stress (strain).  Replacing (37) by (Cl) offers other possibilities.  Equation (35) 

could be applied to materials other than metals. 

The nonlinear viscoelastic solid proposed herein is not a valid model for 

metals if cyclic loadings are involved.  Specifically, we contend that (1) or 

(35) subject to (37) and (38) needs modifications whenever any one tensor 

component fa.. - G..} changes sign.  Equivalently we need modifications when a 
ID   lj 

loading path would penetrate the surface defined by (8).  These modifications 
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will be discussed in a subsequent paper and are stated in principle by 

I      Krempl [21].  Note that the model holds for some nonproportional loading paths, 

see specifically Fig.l. (Further it can be seen from (17), (18) or (62), (63) 

that a creep or relaxation test does not penetrate the surface defined in (8).) 

We may therefore consider a combined creep and relaxation test of the 

following character.  Through proportional loading we reach a shear stress and 

an axial strain which are subsequently kept constant.  We have therefore creep 

in torsion simultaneously occurring with axial relaxation. 

| Considering (62) and (63) we see that the two tests influence each other 

through the invariant cp in G and through the invariant F in k.  If the condi- 

tions are such that only primary creep occurs we can compute from (62) and (63) 

the final value of the shear creep strain as influenced by the shear creep 

stress and the axial relaxation strain since this value does not depend upon 

the function k. 

Figure 4 shows a graph illustrating this relationship for a particular 

choice of G and the cp of (31).  Particular relaxation and creep curves for this 

test are given in Figs.5a and b, respectively,for a constant k.  These curves 

reflect only the influence of the invariant cp.  A dependence of k upon T would 

■       certainly alter the detailed variation of the curves with time, but would not 

influence the qualitative behavior. 

No experiments duplicating the above calculations appear to be available 

for metals.  The trend predicted by our equations has been observed by Lai and 

Findlay [28] on polyurethane. 

I The present model was established as a rate-dependent model.  It can 

predict almost rate-independent behavior for limited ranges of strain rates 

through the function k.  If k is small then the exponential term in (40) can 

become very small.  If in addition the strain rates are small then the integral 

in (40) may be small relative to G. 

I 
I 
I 
I 
I 

I 
I 

I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

22. 

Although our approach differs conceptually from others proposed in the 

literature, certain common elements can be identified. 

Equations (16) and (35), (37) and (38) show that the behavior predicted by 

these equations for a given stress (strain) rate tensor is determined by the value 

of {CT-G}.  Because of this feature our equation is related to the overstress 

model which was previously proposed by Malvern [29], see also Perzyna [30]. 

The curve G can be interpreted as the "equilibrium" stress-strain curve 

of Eisenberg et al. [14] and (8) could be considered an equilibrium surface. 

Concentric to this surface are the ones defined in Eq. (19).  Equation (42) 

shows that a constant strain-rate test can ultimately reach c - G = A where A 
r\s r\j r\j f\j 

is constant.  On the surfaces A = const, the inelastic strain rate is constant, 

see Eq. (14); it is zero for A = 0.  Therefore, the surfaces A = const could 

for a given e be interpreted as the Q-surfaces proposed by Rice [9] and G[s] 

for a given e would be identified as the rest stress, see Rice [9].  Further 

if we consider the approximation of rate independence discussed earlier then 

the surfaces A = const are close together as proposed by Rice, see Fig.2 in [9]. 

Equation (18) clearly shows that the creep strain rate is dependent ona-G as 

discussed by Eisenberg et al. [14], p.1249. 

The concept of a rest stress or back stress is also employed in the 

basically rate-dependent formulations of Miller [31] and Krieg et al. [32] . 

In their approach the inelastic strain rate is zero when the applied stress 

reaches the rest stress.  This property is shared by the present model. 

The above shows that our theory contains elements of other approaches. 

The connecting link is the {CT-G} dependence of our final equations. 

This dependence together with the specialization (11a) or (37) assures 

that the solutions depend on CT and e only through {CT-G}.  As a consequence 

the solutions have properties representative of actual metal deformation be- 

havior.  These properties include: 
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• Initial elastic response upon departure from a  = G[e], Eqs.(9)  (10) 

(11a) and (39). 

• The existence of a "steady-state" condition for constant strain rate, 

Eq. (41). If in (41) k would depend on cp, cp instead of T then k[cp,cp] | 

would have to be constant for {a - G} to be constant*.  In this case the 

[a- G}-curves for various constant strain rates would be linearly spaced, 

see (41) and [23].  A creep or relaxation test started from the steady- 

state condition would in this case be linear in stress, see (62) 

and (63).  If k is made to depend on T then both nonlinear spacing of 

the stress-strain curves at various constant strain rates results and the 

creep and relaxation curves originating from the steady-state position 

of the stress-strain curve depend nonlinearly on stress in accordance 

with the qualitative behavior of metals. 

There are other desirable properties as a consequence of the {CJ-G} 

dependence of the equations.  They are discussed in [23] for the uniaxial case 

and carry over to the multiaxial case.  For details in the uniaxial case the 

reader is referred to Cernocky and Krempl [23] and Liu and Krempl [24]. 

*  3G-- 11 In making this argument we assume ——- to be constant.  For realistic 
OS,  

^~ km  - 
oG. . ÖG. . 

cases ||— 1| « E so that small changes of T-  with e have little effect 
km km 

on a  - G. 
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TABLE I 

INVARIANTS 9 and cp* 

Invariant 

Subscript 9 9 

1 
(1.5 e. .e. .)** 

1} ID (1.5 s. .s. J^5 

ID ID (l + v) 

2 (*..<l'..)35 
1] 1] 

(a. .a. .V 
ID ID 

3 
(1. 5 e. .e. .f , ^ . ) 

i] i]Tab ab 
(1.5 s. .s. .a <J J1/4 

ij   lj ab ab a + v)h 

( eiDeii  ^ r(l+v)2sijs.j+l(l-2v)2(akk)2i5 

\l + 2v2)y ^ l + 2v2 ' 

(1.5 e.AeiA) + ßfe^J2-,^ r(1.5  s± .s   .) (1 + v)2+ ß (1 - 2v)2 (a. . )2nh 

I 
(l+v)"+ ß(l- 2v)"   " *" (1 + V)2   +  ßd- 2v)2 

PH 

I* 
From   (Bl)   and cr=G[e]   we get cp. =g[cp.]   i = 1 ... 5  and this  represents  an 

"effective"   stress-strain diagram. 

■*-*■ 

Only positive roots are intended. 
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FIGURE CAPTIONS 

Torsional response for various constant axial prestrain values 
at a shear strain rate of 10"4 s-1.  The pure shear and the 
pure tensile stress-strain curves at the same strain rates are 
also shown.  Note the initial linear elastic shear response 
is independent of the tensile prestrain (prestrain values 
greater than .04 are only for the illustration of the mathe- 
matical properties of the solutions).v = .3. 

The influence of the choice of the invariant cp upon the pure 
shear response in the limit of very slow loading, see Eq.(52). 
The tensile curve is independent of the choice of cp.  In all 
the shear curves v = .3. 

Uniaxial stress-strain curves at various strain rates, Fig.3a, 
and shear stress vs. engineering shear strain (2e12) curves 

at the same rates, Fig.3b.  The solutions correspond to the 
integration of (45) and (47a).  Note the nonlinear spacing of 
the curves which is due to the dependence of k upon T. 

Simultaneous axial relaxation and shear creep.  Final value of 
total shear strain in primary creep at various constant shear 
stress values plotted vs axial constant prestrain for a 
specific g-function and cp = cp. ; V = .3. 

Axial relaxation curves with shear creep at constant shear 
stress occurring simultaneously.  Material properties corre- 
spond to Fig.4.  k = 1 hr. 

Complement to Fig.5a.  Total shear strain curves in shear creep 
with axial relaxation at constant axial strain occurring 
simultaneously.  Material properties are those used in Figs.4 
and 5a. 
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APPENDIX I 

TORSIONAL RESPONSE IN THE PRESENCE OF AXIAL PRESTKESS. 
THE PREDICTION OF (1) 

For the thin-walled tube usually employed in plasticity experiments an 

axial prestress 

[a] = 

CT 0 0 

0 0 0 

0  0  0 

(Al) 

results in a strain tensor 

[e] = 

11 

0 S22 S23 

0 623 633 

(A2) 

In the case of isotropy e  = 0 and &22  =  e^.  The strain matrix (A2) can be 

arrived at by purely kinematical consideration and by assuming that the state 

of stress and the state of deformation are homogeneous. 

We have to assume that G, M and K in (1) are constructed in such a way 

that (Al) gives rise to (A2).  Now let CT in (Al) be constant for all t^t >0. 

At time t = t the stress increment 
o 

[dCT] = 

0 

dCT 

dCT 

dCT12  dai3 

12 

13 

0 

0 

(A3) 

with der  = der  is imposed which can result in the strain increment (depend- 

ing upon the material symmetries some of the de components may be zero; in the 

case of isotropy de  = 0) 

[de] = 

deil dG12 dS13 

d£12 dG22 d623 

dG13  dS23  dS33 

(A4) 
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A2. 

The components of the tensors in (Al) - (A4) are referred to a rectangular co- 

ordinate system with the e -direction along the axis of the usually employed 

thin-walled tube. 
da 

To obtain useful results we have to restrict M, K and -=—.  Specifically ^  «    de 

the components of the above tensors with an index appearing only once or with 

two identical indices and the other two indices different will be set equal to 

zero . We then obtain from (9) 

Mllll^ll + M1122^22 + M1133^33 = ail " Gll 

M22lAl + M2222^22 + M2233S33 = °        } ^^ 

"3311*11 + M3322^22 + M3333*33 = ° 

e23 = 0 (A5-2) 

(M1212 " 2K1212 ^f>i2  =  ° (A5"3) 

M1313 " 2K1313   a^f>i3  =  ° • (A5"4) 
( 

Because of the fact that e  and e   are arbitrary in (A5-3) and (A5-4), 

respectively we see that the shear response is elastic provided (11a) holds. 

Equations (A5-1) are constraint equations which must and can be satisfied. 

The material symmetries to which we have restricted ourselves include the 

usual cases of isotropy, transverse isotropy and orthotropy.  These are material 

symmetries that are pertinent to the thin-walled tube tests of plasticity. 

From the above we see that (1) together with (11a)and the imposed sym- 

metry restrictions reproduces the initial elastic shear response under a tensile 

prestress observed in many experiments.  We note that while the initial shear 

We are therefore not considering the most general case. 
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response remains unaltered by the presence of large axial prestress (prestram), 

I       as shown in Fig.l the subsequent nonlinear shear response is affected by the 

magnitude of the prestress (prestrain) value. 

I 

I 
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I 
I 
I 

Isotropie Case 

From   (39)  we obtain for de       = 0 and e23 = 0 

ai{r. .       SCT. .v /     oi|r OCT 

I 
I,    di|r. .  OCT. .v      / of. .  OCT. >N 

(- ^ - ^>u *<'^- *£> 

\    Ze13      oe13/ 13    k[r] 

™ From (A6) using (Al), (A3), (Bl) and (B5) 

Iff,,-G,. [e] 
;    =   1X    13- ~ (A7) 
ii        Ekrri '11    Ek(T] 

as well as 
ÖCT12 •      /   E     3012 

e  + 2( - —) e  = 0 (A8) 
11   \2(l + v)  oe,./ 12 de   11   \2(l + v)  Se

12
7 12 

ÖCT12  ÖCT13 Since e  can be 

arbitrarily imposed and since e  is given by (A7) we conclude from (A7) and (A8) 

where we have used dCTl2 = äa±3,   
e
12 

= ei3 and 3e de— '  Since ei2 

'11 

OCT      CCT „ 
 ii =  H  =  Ü  (A9) 
Öei2   Öei3   2(1 + v) 

and 

OCT, „   CCT 
13    12 = 0 . (A10) 

öeil  5eil 

rtCT 
Note that no restrictions were put on ^ in the isotropic case.  The derivation 

for torsional prestress and subsequent axial loading is similar with analogous 

results. 
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APPENDIX II 

CONSTRUCTION OF ISOTROPIC G.. FUNCTIONS AND INVARIANTS 
ID 

When e.. =e.„ # 0 and all other e   are zero, the component functions 
ij       ji ab 

G  =G  are required to have the general form of a stress-strain curve, and 
ij  ji 

all other G  must equal zero.  Further, G must be isotropic and must reduce to 
ab ~ 

the linear isotropic elastic relationship in strain for an initial interval of 

strain. Also we require that G reduce appropriately, Eq. (26), to the uniaxial 

case when a uniaxial deformation field, Eq. (25), is imposed. Consequently, an 

acceptable representation of G.. is 

G..[e, = t.. sm. 

*ij " (1+V)  \eij + (l-2v) Skk6d 

} with J (Bl) 

*   e 5 ' 
(1- 2\j) bkk ij, 

and for cp < § where 5 is some appropriate number « 1 

g[y] 
9 

~ g'[0] . (B2) 
9£ 5 

Usually g1 [0] = E, the modulus of elasticity.  The function g[x] represents 

the uniaxial stress-strain curve for the axial strain x in the limit of very 

slow loading.  For its idealized mathematical representations the methods pro- 

posed by Liu et al. [26] or Cernocky and Krempl [27] may be used.  In these two 

cases g[x] is analytic, monotonic, and is (3[x] * both as x->0 and as x-»°o. 

0[x] denotes the Landau order symbol; see p.128 of R.G. Bartle, The Elements 
of Real Analysis, Wiley 1976. 
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B2. 

Various constructions of the invariant cp and its partner invariant cp appear 

in Table I.  Certainly an infinite variety of invariant constructions is possible. 

We note that two of the representation pairs of (cp,cp), that is (cp cp ) and (cp cp ), 

are deviatoric ; they vanish under a hydrostatic strain and stress field, 

respectively.  All cp and cp in Table I reduce to the uniaxial strain and stress, 

respectively, in the uniaxial deformation field.  In addition, all of the 

listed cp satisfy the differential equation 

-^—  e. . = 9 . (B3) 
de. .  ij 

ID 

Differentiation of G.. with respect to strain yields 
ID 

 ij   = g[cp]      *ij   +  ^ cpg- [cp] - g [cp]      ocp 
de . cp     de ,        Vij 2 de , 

ab T ab cp ab 

and y (B4) 
dG. . 
 ID 

ab 

dt. • 

„■g'[0,< e=0 ab 

} 

<-V      (V 

where 

0+ 

ab ij = TTT^T (l   (6ia6jb + 6ib6ja)   + TT^JT 6ij6ab) (B5) 

3i|i. . 
so  that we obtain ^  e  ,    = ilf. ..     Then for the strain invariants which satisfy 

de ,  ab   11 J 

ab 
(B3) we obtain the condition 

|!!ile..e  --älM- (e..e.. +_'    (e..)
2) 20        (B6) 

de^ 13 ab   (1+v)   ID ID   (1-2V)   JJ 

■        provided g' [cp] ^ 0 which is usually the case for metals.  Also from (B3) - (B6) 

I 
we obtain 

,     of. .        oG. .v . 2v 

(EoT7- öTT; 
eijeab=(E-g'[cP]) 7iT^ (eijeij +7T^T (e

jj
) )*o    (B?) 

ab ab 

provided E  2: g1 [cp] . 
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B3. 

If the Y[X] functions of Cernocky and Krempl [27] are used for the repre- 

sentation of g[cp] then the following approximate expressions result for cp>Xf 

for the second kernel form and for appropriately selected constants 

(E- E_) (RX - \_), 

C - \  ] f  o 

1  (E-Es)(RXf-V^ 
Gij[el~ Ws +9    HF[RX -X] ) 

(B8) 

and 

^-Ü^E ^-ü (B9) 
oe ,   s de , ab       ab 

where 
E - elastic modulus 

E - tangent modulus in the "plastic range" 
s 

R, X \    -  parameters of the uniaxial stress-strain curve as 
defined in [27] 

I P[x] - any of the base functions listed in [27]. 

The selection of the Y[X]-functions for the representation of g [cp] requires 

■ that the actual uniaxial stress-strain diagram can be approximated by an initial 

■ linear range, followed by a strong nonlinear monotonic curvature which terminates 

with another linear region.  Although we have found these representations for 

I       g[cp] very useful, the theory presented herein is valid for any suitable 

g-function. 

■ We note that the particular choice of the suitable invariant cp does not 

m                   influence the character of the constitutive equations governing uniaxial 

deformation; this is because in the uniaxial field cp is made to reduce to the 

■ axial strain.  However, the selection of a particular invariant is a constitutive 

assumption, and the particular construction of cp does influence the nature of 

P        all deformations other than those of the tensile test.  Specifically, in a pure 

M        torsion deformation, the shear stress- shear strain curve will differ from a 

*       pure tensile stress- axial strain curve at corresponding strain values, and 

I        this difference will depend upon the particular choice of cp.  This is clear in 

I 
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I 

Fig.2 in which we have plotted the solution for a pure tensile loading at 

1        limitingly small strain rate and then have plotted pure shear deformation curves 

m on the same strain scale and at the same limiting loading rate for each of the 

five invariants cp in Table I.  The influence of the choice of cp upon the shear 

I        stress-strain diagram is apparent.  The results shown in Fig.2 apply similarly 

for other and more complicated deformations.  Consequently, full understanding 

|        of the uniaxial and shear deformation characters of the material will strongly 

«        motivate the construction of appropriate invariants cp. 

™ We note that if the cp which appears in the hydrostatic equation (34) is 

deviatoric, then when (37) applies, Eq. (35) predicts linear elastic rate- 

independent response to a pure hydrostatic loading.  This prediction is deemed 

I        suitable for metals.  Conversely if cp is not deviatoric in (34) then the theory 

predicts a nonlinear rate-dependent response under pure hydrostatic loading. 

The deviatoric and hydrostatic relations (33) and (34) are combined into (35) 

because the same stress and strain invariants have been used in both of (33) 

and (34).  We may however elect to use different constructions of cp in the 

I        respective deviatoric and hydrostatic constitutive equations.  This increases 

the capability of the model.  For example, a deviatoric cp may be used in Eq.(34), 

while a nondeviatoric cp may be used in the deviatoric relation (33).  We recall 

cp is determined according to the condition cp=g[cp] if a = G. 

I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
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APPENDIX III 

Instead of postulating ™    \   = E as in (38) we set 

ZLLj = J. [q), . *SM and g' [0] = E (Cl) 

where 9 is a suitable invariant of the strain tensor.  The assertions given 

below can be verified if E is replaced by g1[9] in the appropriate equations. 

Equation (Cl) has the following consequences: 

• The "elastic strain rate" is no longer linear, i.e., from (33) 

and (34), respectively, 

Gd.v s. . (1+ V) 

>... -(ij
r n

ij) (i+v) + -4- (C2) 

g' [cp] 

-G v a  (l-2v) 
__=-) (1.2v) + _" 

aa  \ m[ ]  / * 
e  = (_^2 22 1 (i-2v) + —  (C3) 

• If g'[9] > g'[9] then (60), (61) change sign, see Cernocky and 

Krempl [23] 

• Initial linear elastic response in shear may not result in the 

presence of axial prestress, see Eqs.(A8) and (A9) 

• The spacing of stress-strain curves obtained at various strain rates 
*- 

is strongly affected by g, see (41) and (43).  Note that (44) still 

holds; see [23]. 

• The change in slope upon an instantaneous strain-rate change, 

Eqs. (56) - (59) is no longer independent of e 

o * 
• The creep rate depends not only on a. . -G. . [e] but also on g' [9], 

Eq. (62). 

• In the limit of very fast strain rates a nonlinear stress-strain 

curve  may be obtained, see Eq.(55). 
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• For a hydrostatic state of strain the stress response may become 

nonlinear and rate-dependent under suitable selections of the in- 

variants in g and G.  If a nondeviatoric invariant is used for g 

then the stress response to a hydrostatic strain may be nonlinear 

and rate dependent for nonzero strain rates.  In the limit of very 

slow loading, however, the response is linear if a deviatoric 

invariant is used in G. 
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